HTTPX Client
vedro-httpx is a plugin designed for the Vedro testing framework. Its main goal is to simplify the process of sending HTTP requests via HTTPX, a fully-featured HTTP client that supports both synchronous and asynchronous APIs, as well as HTTP/1.1 and HTTP/2 protocols.
Setup
- Quick
- Manual
For a quick installation, you can use a plugin manager like so:
$ vedro plugin install vedro-httpx
If you prefer a manual approach, follow these steps:
- Install the package using pip:
$ pip3 install vedro-httpx
- Then, enable the plugin in the
vedro.cfg.py
configuration file:
# ./vedro.cfg.py
import vedro
import vedro_httpx
class Config(vedro.Config):
class Plugins(vedro.Config.Plugins):
class VedroHTTPX(vedro_httpx.VedroHTTPX):
enabled = True
Basics
The core functionality of the vedro-httpx
plugin is provided by the AsyncHTTPInterface
class. You can use this class to define your API interface. Below is an example of creating an AuthAPI interface for an authentication API:
- Async
- Sync
from vedro_httpx import Response, AsyncHTTPInterface
class AuthAPI(AsyncHTTPInterface):
def __init__(self, base_url: str = "http://localhost") -> None:
super().__init__(base_url)
async def login(self, username: str, password: str) -> Response:
return await self._request("POST", "/auth/login", json={
"username": username,
"password": password
})
The _request()
function is used to send HTTP requests. It passes the arguments directly to the httpx.AsyncClient.request()
method.
For a comprehensive understanding of the AsyncClient.request()
method and its various parameters, see the official HTTPX documentation
from vedro_httpx import Response, SyncHTTPInterface
class AuthAPI(SyncHTTPInterface):
def __init__(self, base_url: str = "http://localhost") -> None:
super().__init__(base_url)
def login(self, username: str, password: str) -> Response:
return self._request("POST", "/auth/login", json={
"username": username,
"password": password
})
The _request()
function is used to send HTTP requests. It passes the arguments directly to the httpx.Client.request()
method.
For a comprehensive understanding of the Client.request()
method and its various parameters, see the official HTTPX documentation
Once you've defined your AuthAPI interface, you can incorporate it into your test scenarios. Here's an example scenario that simulates a registered user logging in:
- Async
- Sync
import vedro
from contexts import registered_user
from interfaces import AuthAPI
class Scenario(vedro.Scenario):
subject = "login as registered user"
async def given_user(self):
self.user = await registered_user()
async def when_user_logs_in(self):
self.response = await AuthAPI().login(self.user["username"], self.user["password"])
def then_it_should_return_success_response(self):
assert self.response.status_code == 200
import vedro
from contexts import registered_user
from interfaces import AuthAPI
class Scenario(vedro.Scenario):
subject = "login as registered user"
def given_user(self):
self.user = registered_user()
def when_user_logs_in(self):
self.response = AuthAPI().login(self.user["username"], self.user["password"])
def then_it_should_return_success_response(self):
assert self.response.status_code == 200
If scenario fails, vedro-httpx
provides a beautifully formatted output of the response, including headers and the body:
- Using Plugin
- Without Plugin
$ vedro run -v
...
AssertionError: assert 201 == 200
Scope
user: {
"username": "ofo",
"password": "933ggv8hkhV_FLZ"
}
response: Response:
HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
content-length: 98
date: Wed, 14 Jun 2023 11:16:41 GMT
server: Python/3.10 aiohttp/3.8.4
{
│ "username": "ofo",
│ "token": "d77cdd1765953fb9867796132a8330075e9521c0",
│ "created_at": 1686727001
}
$ vedro run -v
...
AssertionError: assert 201 == 200
Scope
user: {
"username": "ofo",
"password": "933ggv8hkhV_FLZ"
}
response: <Response [201 Created]>
}
This feature requires Vedro v1.9.1 or higher
Advanced Usage
In addition to the basic request method, the vedro-httpx
plugin also allows you to directly use the HTTPX client.
- Async
- Sync
from vedro_httpx import Response, AsyncHTTPInterface
class AuthAPI(AsyncHTTPInterface):
def __init__(self, base_url: str = "https://localhost") -> None:
super().__init__(base_url)
async def login(self, username: str, password: str) -> Response:
async with self._client(verify=False) as client:
return await self._request("POST", "/auth/login", json={
"username": username,
"password": password
})
This approach provides full flexibility in using the HTTPX AsyncClient
directly, allowing you to control additional parameters such as SSL verification.
from vedro_httpx import Response, SyncHTTPInterface
class AuthAPI(SyncHTTPInterface):
def __init__(self, base_url: str = "https://localhost") -> None:
super().__init__(base_url)
def login(self, username: str, password: str) -> Response:
with self._client(verify=False) as client:
return self._request("POST", "/auth/login", json={
"username": username,
"password": password
})
This approach provides full flexibility in using the HTTPX Client
directly, allowing you to control additional parameters such as SSL verification.
For more information and available parameters, check out the official HTTPX documentation.
Request Recording
The vedro-httpx
plugin also enables recording of HTTP requests made during scenario execution and saving the data as a scenario artifact in HAR (HTTP Archive) format. This can be especially useful for debugging and auditing.
$ vedro run --httpx-record-requests
Artifacts, such as recorded HTTP requests, can be attached to an Allure report. Use the following command to generate an Allure report with HTTP request recordings:
$ vedro run -r rich allure --httpx-record-requests
If you prefer to save artifacts locally for offline analysis, you can use the --save-artifacts
option. This will save the recorded HTTP requests as HAR files on your local file system:
$ vedro run --httpx-record-requests --save-artifacts
HAR files can be opened and analyzed using browser developer tools or local tools such as Fiddler or Insomnia. Additionally, you can use online tools like the Google HAR Analyzer for convenient, web-based viewing.